The Double Angle Identities:
sin(2θ)= sin(θ+θ)= sinθcosθ + cosθsinθ= 2sinθcosθ
cos(2θ)= cos(θ+θ)= cosθcosθ-sinθsinθ= cos 2θ-sin 2θ
cos(2θ)= cos 2θ-sin 2θ= 1-sin 2θ 2 cos 2θ
tan(2θ)= tan(θ+θ)= tanθ +tanθ/1- tanθ+tanθ= 2tan/1-tan2θ
**NOTE**
csc2θ= 1/sin2θ
sec2θ=1/cos2θ
cot2θ=1/tan2θ
Example: verify
sin3 x = -4sin3 x+3 sin x
LHS= sin 3x
=sin(2x+ x)
=sin 2x cos x + cos 2x sin x
=(2sin x cos x)cos x+ ( cos 2 x-sin 2 x)sin x
=2 sin x cos 2 x + cos 2 x sin x - sin 3x
=2sin x(1-sin 2 x)+(1-sin 2 x)sin x - sin 3x
=2sin x- 2 sin3 x+ sin x -sin3 x- sin 3x
LHS=-4sin3 x + 3 sin x = RHS
No comments:
Post a Comment